Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type

§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type
§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Consider a collection of $N=N_{1}+N_{2}$ similar objects, N_{1} of them belonging to one of the two dichotomous classes (red chips, say) and N_{2} of them belonging to the second class (blue chips, say).

A collection of n objects is selected from these N objects at random and without replacement.

Find the probability that exactly x of these n objects belong to the first class and $n-x$ belong to the second. Clearly, we need

$$
\begin{equation*}
0 \leq x \leq N_{1} \quad \text { and } \quad 0 \leq n-x \leq N_{2}, \tag{1}
\end{equation*}
$$

which are equivalent to

$$
\max \left(n-N_{2}, 0\right) \leq x \leq \min \left(n, N_{1}\right) .
$$

We can select x objects from the fist class in any one of $\binom{N_{1}}{x}$ ways and $n-x$ objects from the second class in any one of $\binom{N_{2}}{n-x}$ ways.

By multiplication principle, the product $\binom{N_{1}}{x}\binom{N_{2}}{n-x}$ equals the number of ways the joint operation can be performed.

If we assume that each of the $\binom{N}{n}$ ways of selecting n objects from $N=N_{1}+N_{2}$ objects has the same probability, it follows that the desired probability is
$f(x)=\mathbb{P}(X=x)=\frac{\binom{N_{1}}{x}\binom{N_{2}}{n-x}}{\binom{N}{n}}, \quad \max \left(n-N_{2}, 0\right) \leq x \leq \min \left(n, N_{1}\right)$.
Then we say the random variable X has a hypergeometric distribution with parameters N_{1}, N_{2} and n, denoted as $\operatorname{HG}\left(N_{1}, N_{2}, n\right)$.

Example 2.5-1 A lot (collection) consisting of 100 fuses is inspected by the following procedure: Five fuses are chased at random and tested; if all five blow at the correct amperage, the lot is accepted. Suppose that the lot contains 20 defective fuses. If X is a random variable equal to the number of defective fuses in the sample of 5 , the probability of accepting is

$$
\mathbb{P}(X=0)=\frac{\binom{20}{0}\binom{80}{5}}{\binom{100}{5}}=0.3193
$$

More generally, the pmf of X is

$$
f(x)=\mathbb{P}(X=x)=\frac{\binom{20}{x}\binom{80}{5-x}}{\binom{100}{5}}, \quad x=0,1,2,3,4,5
$$

x	0	1	2	3	4	5
$f(x)$	$\frac{149380}{378131}$	$\frac{933625}{2268786}$	$\frac{182875}{1134393}$	$\frac{78375}{2646917}$	$\frac{2375}{934206}$	$\frac{38}{467103}$
approx.	0.3951	0.4115	0.1612	0.02961	0.002542	0.00008135

Theorem 2.5-1 Suppose that X follows $H G\left(N_{1}, N_{2}, n\right)$. Then

$$
\mathbb{E}(X)=n\left(\frac{N_{1}}{N}\right) \quad \text { and } \quad \operatorname{Var}(X)=n\left(\frac{N_{1}}{N}\right)\left(\frac{N_{2}}{N}\right) .
$$

Remark 2.5-1 Check Examples 2.2-3 and 2.3-5.

